Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Pharmacol ; 74(6): 701-709, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29532104

RESUMO

PURPOSE: Inhaled drug delivery is an attractive route by which to deliver drugs to lungs of patients with idiopathic pulmonary fibrosis (IPF). GSK3008348 is a potent and selective small molecule being developed as the first inhaled inhibitor of the αvß6 integrin for the treatment of IPF. The phase 1 first-time-in-human clinical trial (NCT02612051) presented here was designed to investigate the safety, tolerability and pharmacokinetic (PK) profile of single doses of GSK3008348 in healthy participants. METHODS: Single ascending doses of GSK3008348 were administered to three cohorts of eight healthy participants in a randomised, double-blind, placebo-controlled, 4-period crossover design. Safety, tolerability and PK were assessed after single doses of 1-3000 mcg given by nebulisation. RESULTS: A total of 29 participants were enrolled and received at least one dose of study treatment. There were no serious adverse events (AE) reported in any participant. No trends or clinically important differences were noted in the incidence or intensity of AEs or other safety assessments. Maximum plasma concentrations of GSK3008348 were generally attained within approximately 30 min after start of nebulisation, with geometric mean terminal elimination half-lives ranging from 7.95 to 10.2 h. Exposures, as measured by area under the plasma concentration-time curve (AUC), were dose proportional across all doses where estimates were possible (100-3000 mcg). Dose normalised geometric mean Cmax increased with dose up to 3000 mcg. This supra proportionality was relatively modest, with a less than 3-fold increase over the range from 30 to 3000 mcg. The reason(s) for this observation are currently not known but may be due to slower absorption at the lowest doses. All exposures were within the exposure margins set by the non-clinical toxicity studies and so this is not expected to have any impact on safety. CONCLUSIONS: In summary, GSK3008348 was well tolerated at single doses up to 3000 mcg in healthy participants, and its PK profile was dose proportional at potentially clinically relevant doses (300-3000 mcg). These findings support further development of GSK3008348 as a novel inhaled treatment option for IPF.


Assuntos
Butiratos/farmacologia , Butiratos/farmacocinética , Integrinas/antagonistas & inibidores , Naftiridinas/farmacologia , Naftiridinas/farmacocinética , Pirazóis/farmacologia , Pirazóis/farmacocinética , Pirrolidinas/farmacologia , Pirrolidinas/farmacocinética , Administração por Inalação , Adulto , Antígenos de Neoplasias , Butiratos/uso terapêutico , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Naftiridinas/uso terapêutico , Pirazóis/uso terapêutico , Pirrolidinas/uso terapêutico
2.
Development ; 143(11): 1907-13, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27048738

RESUMO

The correct migration and axon extension of neurons in the developing nervous system is essential for the appropriate wiring and function of neural networks. Here, we report that O-sulfotransferases, a class of enzymes that modify heparan sulfate proteoglycans (HSPGs), are essential to regulate neuronal migration and axon development. We show that the 6-O-sulfotransferases HS6ST1 and HS6ST2 are essential for cranial axon patterning, whilst the 2-O-sulfotransferase HS2ST (also known as HS2ST1) is important to regulate the migration of facial branchiomotor (FBM) neurons in the hindbrain. We have also investigated how HS2ST interacts with other signals in the hindbrain and show that fibroblast growth factor (FGF) signalling regulates FBM neuron migration in an HS2ST-dependent manner.


Assuntos
Orientação de Axônios , Movimento Celular/efeitos dos fármacos , Neurônios Motores/citologia , Proteoglicanas/metabolismo , Crânio/metabolismo , Sulfatos/metabolismo , Animais , Orientação de Axônios/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Crânio/efeitos dos fármacos , Sulfotransferases/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Nat Protoc ; 8(2): 418-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23424750

RESUMO

The mouse embryo hindbrain is a robust and adaptable model for studying sprouting angiogenesis. It permits the spatiotemporal analysis of organ vascularization in normal mice and in mouse strains with genetic mutations that result in late embryonic or perinatal lethality. Unlike postnatal models such as retinal angiogenesis or Matrigel implants, there is no requirement for the breeding of conditional knockout mice. The unique architecture of the hindbrain vasculature allows whole-mount immunolabeling of blood vessels and high-resolution imaging, as well as easy quantification of angiogenic sprouting, network density and vessel caliber. The hindbrain model also permits the visualization of ligand binding to blood vessels in situ and the analysis of blood vessel growth within a natural multicellular microenvironment in which endothelial cells (ECs) interact with non-ECs to refine the 3D organ architecture. The entire procedure, from embryo isolation to imaging and through to results analysis, takes approximately 4 d.


Assuntos
Diagnóstico por Imagem/métodos , Embrião de Mamíferos/embriologia , Modelos Animais , Neovascularização Fisiológica/fisiologia , Rombencéfalo/embriologia , Animais , Anticorpos Monoclonais , Ligantes , Camundongos , Rombencéfalo/irrigação sanguínea
4.
Dev Biol ; 369(2): 277-85, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22790009

RESUMO

The sympathetic nervous system (SNS) arises from neural crest (NC) cells during embryonic development and innervates the internal organs of vertebrates to modulate their stress response. NRP1 and NRP2 are receptors for guidance cues of the class 3 semaphorin (SEMA) family and are expressed in partially overlapping patterns in sympathetic NC cells and their progeny. By comparing the phenotypes of mice lacking NRP1 or its ligand SEMA3A with mice lacking NRP1 in the sympathetic versus vascular endothelial cell lineages, we demonstrate that SEMA3A signalling through NRP1 has multiple cell-autonomous roles in SNS development. These roles include neuronal cell body positioning, neuronal aggregation and axon guidance, first during sympathetic chain assembly and then to regulate the innervation of the heart and aorta. Loss of NRP2 or its ligand SEMA3F impaired sympathetic gangliogenesis more mildly than loss of SEMA3A/NRP1 signalling, but caused ectopic neurite extension along the embryonic aorta. The analysis of compound mutants lacking SEMA3A and SEMA3F or NRP1 and NRP2 in the SNS demonstrated that both signalling pathways cooperate to organise the SNS. We further show that abnormal sympathetic development in mice lacking NRP1 in the sympathetic lineage has functional consequences, as it causes sinus bradycardia, similar to mice lacking SEMA3A.


Assuntos
Neurogênese/fisiologia , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/metabolismo , Animais , Aorta/embriologia , Aorta/inervação , Aorta/metabolismo , Axônios/metabolismo , Linhagem da Célula , Feminino , Coração Fetal/embriologia , Coração Fetal/inervação , Coração Fetal/metabolismo , Gânglios Simpáticos/crescimento & desenvolvimento , Gânglios Simpáticos/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/embriologia , Crista Neural/metabolismo , Neuritos/metabolismo , Neurogênese/genética , Neuropilina-1/deficiência , Neuropilina-1/genética , Neuropilina-2/deficiência , Neuropilina-2/genética , Gravidez , Semaforina-3A/deficiência , Semaforina-3A/genética , Semaforina-3A/metabolismo , Transdução de Sinais , Sistema Nervoso Simpático/citologia
5.
Circ Res ; 111(4): 437-45, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22723296

RESUMO

RATIONALE: The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. OBJECTIVE: We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. METHODS AND RESULTS: We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. CONCLUSIONS: Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.


Assuntos
Vasos Linfáticos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Vasos Linfáticos/embriologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuropilina-1/deficiência , Neuropilina-1/genética , Neuropilina-1/imunologia , Fenótipo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Semaforina-3A/deficiência , Semaforina-3A/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Biochem Soc Trans ; 37(Pt 6): 1228-32, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909252

RESUMO

Blood vessels and neurons share guidance cues and cell-surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 (neuropilin 1) is present on both blood vessels and nerves and binds two structurally diverse ligands, the class 3 semaphorin SEMA3A and an isoform of the vascular endothelial growth factor VEGF-A termed VEGF(165) (VEGF(164) in mice). In vitro, SEMA3A competes with VEGF(164) for binding to NRP1 to modulate the migration of endothelial cells and neuronal progenitors. It was therefore hypothesized that NRP1 signalling controls neurovascular co-patterning by integrating competing VEGF(164) and SEMA3A signals. However, SEMA3A, but not VEGF(164), is required for axon patterning of motor and sensory nerves, and, vice versa, VEGF(164) rather than SEMA3A is required for blood vessel development. Ligand competition for NRP1 therefore does not explain neurovascular congruence. Instead, these ligands control different aspects of neurovascular patterning that have an impact on cardiovascular function. Thus SEMA3A/NRP1 signalling guides the NCC (neural crest cell) precursors of sympathetic neurons as well as their axonal projections. In addition, VEGF(164) and a second class 3 semaphorin termed SEMA3C contribute to the remodelling of the embryonic pharyngeal arch arteries and primitive heart outflow tract by acting on endothelium and NCCs respectively. Consequently, loss of either of these NRP1 ligands disrupts blood flow into and out of the heart. Multiple NRP1 ligands therefore co-operate to orchestrate cardiovascular morphogenesis.


Assuntos
Vasos Sanguíneos/embriologia , Morfogênese , Neurônios/fisiologia , Neuropilina-1/metabolismo , Isoformas de Proteínas/metabolismo , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Coração/embriologia , Ligantes , Camundongos , Neuropilina-1/genética , Isoformas de Proteínas/genética , Semaforina-3A/genética , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Sistema Nervoso Simpático/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
7.
Development ; 136(11): 1785-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19386662

RESUMO

The peripheral nervous system (PNS) of higher vertebrates is segmented to align the spinal nerve roots with the vertebrae. This co-patterning is set up during embryogenesis, when vertebrae develop from the sclerotome layer of the metameric somites, and PNS neurons and glia differentiate from neural crest cells (NCCs) that preferentially migrate into the anterior sclerotome halves. Previous analyses of mice deficient in the class 3 semaphorin (SEMA3) receptors neuropilin (NRP) 1 or 2 raised the possibility that each controlled a distinct aspect of trunk NCC migration. We now demonstrate that both pathways act sequentially in distinct NCC subpopulations and thereby cooperate to enforce segmental NCC migration. Specifically, SEMA3A/NRP1 signalling first directs one population of NCCs from the intersomitic path into the sclerotome, and SEMA3F/NRP2 signalling acts subsequently to restrict a second population to the anterior half of the sclerotome. NCC exclusion from either the posterior sclerotome or the intersomitic boundary is sufficient to enforce the separation of neighbouring NCC streams and the segregation of sensory NCC progeny into metameric dorsal root ganglia (DRG). By contrast, the combined loss of both guidance pathways leads to ectopic invasion of the intersomitic furrows and posterior sclerotome halves, disrupting metameric NCC streaming and DRG segmentation.


Assuntos
Gânglios Espinais/citologia , Crista Neural/citologia , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Células Receptoras Sensoriais/citologia , Animais , Padronização Corporal/fisiologia , Gânglios Espinais/embriologia , Gânglios Espinais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/embriologia , Crista Neural/metabolismo , Neuropilina-1/genética , Neuropilina-2/genética , Semaforina-3A/genética , Semaforina-3A/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...